Impedance Spectroscopy on Polymer-Fullerene Solar Cells

Martin Knipper^a, Jürgen Parisi^a, Kevin Coakley^b, Christoph Waldauf^b, Christoph J. Brabec^b, and Vladimir Dyakonov^c

Z. Naturforsch. **62a**, 490 – 494 (2007); received April 24, 2007

Germany

- ^a Energy and Semiconductor Research Laboratory, Department of Physics, University of Oldenburg, D-26111 Oldenburg, Germany
- ^b Konarka Technologies Germany, Landgrabenstraße 94, D-90443 Nürnberg, Germany ^c Faculty of Physics and Astronomy, University of Würzburg, Am Hubland, D-97074 Würzburg,

D 11 D 14 F D 16 A1 TOO 2004 D 11 L 1 D 1

Reprint requests to Dr. M. K.; Fax: +49 441 798 3326; E-mail: knipper@uni-oldenburg.de

Impedance spectroscopy is used for studying the electrical transport properties of bulk heterojunction solar cells. A replacement circuit is needed to translate the frequency response of the circuit to the individual interfaces and layers of the solar cell. As a material combination and device architecture, composites of P3HT and PCBM, sandwiched between a transparent ITO front electrode and an aluminum back electrode, as well as a polymer buffer layer were investigated. By varying the film thickness we identified an equivalent circuit capable to fit our experimental data. We found a dielectric constant for the P3HT and for the P3HT:PCBM bulk.

Key words: Organic Solar Cells; Bulk Heterojunction; Impedance Spectroscopy; Equivalent Circuit.